Author(s): Yasaman Hashemi
Journal: International Journal of Research In Computer Science
ISSN 2249-8257
Volume: 3;
Issue: 1;
Start page: 27;
Date: 2013;
VIEW PDF
DOWNLOAD PDF
Original page
Keywords: fuzzy integral | chaotic maps | image encryption
ABSTRACT
This article introduces a novel image encryption algorithm based on DNA addition combining and coupled two-dimensional piecewise nonlinear chaotic map. This algorithm consists of two parts. In the first part of the algorithm, a DNA sequence matrix is obtained by encoding each color component, and is divided into some equal blocks and then the generated sequence of Sugeno integral fuzzy and the DNA sequence addition operation is used to add these blocks. Next, the DNA sequence matrix from the previous step is decoded and the complement operation to the result of the added matrix is performed by using Sugeno fuzzy integral. In the second part of the algorithm, the three modified color components are encrypted in a coupling fashion in such a way to strengthen the cryptosystem security. It is observed that the histogram, the correlation and avalanche criterion, can satisfy security and performance requirements (Avalanche criterion > 0.49916283). The experimental results obtained for the CVG-UGR image databases reveal the fact that the proposed algorithm is suitable for practical use to protect the security of digital image information over the Internet.
Journal: International Journal of Research In Computer Science
ISSN 2249-8257
Volume: 3;
Issue: 1;
Start page: 27;
Date: 2013;
VIEW PDF


Keywords: fuzzy integral | chaotic maps | image encryption
ABSTRACT
This article introduces a novel image encryption algorithm based on DNA addition combining and coupled two-dimensional piecewise nonlinear chaotic map. This algorithm consists of two parts. In the first part of the algorithm, a DNA sequence matrix is obtained by encoding each color component, and is divided into some equal blocks and then the generated sequence of Sugeno integral fuzzy and the DNA sequence addition operation is used to add these blocks. Next, the DNA sequence matrix from the previous step is decoded and the complement operation to the result of the added matrix is performed by using Sugeno fuzzy integral. In the second part of the algorithm, the three modified color components are encrypted in a coupling fashion in such a way to strengthen the cryptosystem security. It is observed that the histogram, the correlation and avalanche criterion, can satisfy security and performance requirements (Avalanche criterion > 0.49916283). The experimental results obtained for the CVG-UGR image databases reveal the fact that the proposed algorithm is suitable for practical use to protect the security of digital image information over the Internet.