Academic Journals Database
Disseminating quality controlled scientific knowledge

Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

Author(s): D. Arcay

Journal: Solid Earth Discussions
ISSN 1869-9537

Volume: 4;
Issue: 2;
Start page: 943;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the kinematic decoupling depth, zdec and, on the other hand, of the brittle-ductile transition (BDT) depth, zBDT, simulated along the subduction interplate. The results reveal that zBDT mainly depends on the friction coefficient characterising the interplate channel and on the viscosity at the lithosphere-asthenosphere boundary. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume) if the BDT occurs at the interplate deocupling depth. Regarding the interplate decoupling depth, it is basically a function of (1) mantle viscosity at asthenospheric wedge tip, (2) difference in mantle and interplate activation anergy, and (3) activation volume. Specific conditions yielding zBDT = zdec are discussed. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close impedes strain localization during incipient subduction of a young (20 Myr old) and soft lithosphere under a thick upper plate. Finally, both the BDT depth and the decoupling depth are a function of the subducting plate age, but are not influenced in the same fashion: cool and old subducting plates deepen the BDT but shallow the interplate decoupling depth. Even if BDT and kinematic decoupling are instrinsically related to different mechanisms of deformation, this work shows that they are able to interact closely.
RPA Switzerland

RPA Switzerland

Robotic process automation


Tango Rapperswil
Tango Rapperswil