Author(s): Yuan-cheng LI | Wei-guo ZHANG | Jian-hua QIN | Bing-cheng LIN
Journal: Medical Journal of Chinese People's Liberation Army
ISSN 0577-7402
Volume: 38;
Issue: 6;
Start page: 476;
Date: 2013;
Original page
Keywords: chondrocytes | tissue engineering | microfluidic chip | insulin-like growth factor i | fibroblast growth factor 2
ABSTRACT
Objective To investigate the effects of insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) on the proliferation of chondrocytes in a 3-dimensional (3D) culture environment of microfluidic chip. Method Rabbit articular chondrocytes embedded in microfluidic chip and 96-well plate were cultured with solitary and component concentrations of IGF-1 and bFGF for 2 weeks, and then the proliferation rates of chondrocytes were calculated and compared. Results The maximal proliferation effect of IGF-1 was found when the concentration reached 57.14ng/ml (up to 2.38-fold), and of bFGF at the concentration of 5.72ng/ml (up to 3.85-fold), while the maximal proliferation effect of combination of IGF-1+bFGF was found at the concentration of 85.71ng/ml IGF-1 plus 1.43ng/ml bFGF (up to 4.76-fold). There was no significant difference between the proliferation rate of chondrocytes cultured in microfluidic chip and 96-well plate. Conclusions A combination of IGF-1 plus bFGF in certain concentration may synergistically increase the proliferation of chondrocytes. Microfluidic chip could be used for efficient cartilage tissue engineering.
Journal: Medical Journal of Chinese People's Liberation Army
ISSN 0577-7402
Volume: 38;
Issue: 6;
Start page: 476;
Date: 2013;
Original page
Keywords: chondrocytes | tissue engineering | microfluidic chip | insulin-like growth factor i | fibroblast growth factor 2
ABSTRACT
Objective To investigate the effects of insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) on the proliferation of chondrocytes in a 3-dimensional (3D) culture environment of microfluidic chip. Method Rabbit articular chondrocytes embedded in microfluidic chip and 96-well plate were cultured with solitary and component concentrations of IGF-1 and bFGF for 2 weeks, and then the proliferation rates of chondrocytes were calculated and compared. Results The maximal proliferation effect of IGF-1 was found when the concentration reached 57.14ng/ml (up to 2.38-fold), and of bFGF at the concentration of 5.72ng/ml (up to 3.85-fold), while the maximal proliferation effect of combination of IGF-1+bFGF was found at the concentration of 85.71ng/ml IGF-1 plus 1.43ng/ml bFGF (up to 4.76-fold). There was no significant difference between the proliferation rate of chondrocytes cultured in microfluidic chip and 96-well plate. Conclusions A combination of IGF-1 plus bFGF in certain concentration may synergistically increase the proliferation of chondrocytes. Microfluidic chip could be used for efficient cartilage tissue engineering.