Academic Journals Database
Disseminating quality controlled scientific knowledge

Forecasting Value-at-Risk Using High-Frequency Information

ADD TO MY LIST
 
Author(s): Huiyu Huang | Tae-Hwy Lee

Journal: Econometrics
ISSN 2225-1146

Volume: 1;
Issue: 1;
Start page: 127;
Date: 2013;
Original page

Keywords: VaR | Quantiles | Subsample averaging | Bootstrap averaging | Forecast combination | High-frequency data

ABSTRACT
in the prediction of quantiles of daily Standard&Poor’s 500 (S&P 500) returns we consider how to use high-frequency 5-minute data. We examine methods that incorporate the high frequency information either indirectly, through combining forecasts (using forecasts generated from returns sampled at different intraday interval), or directly, through combining high frequency information into one model. We consider subsample averaging, bootstrap averaging, forecast averaging methods for the indirect case, and factor models with principal component approach, for both direct and indirect cases. We show that in forecasting the daily S&P 500 index return quantile (Value-at-Risk or VaR is simply the negative of it), using high-frequency information is beneficial, often substantially and particularly so, in forecasting downside risk. Our empirical results show that the averaging methods (subsample averaging, bootstrap averaging, forecast averaging), which serve as different ways of forming the ensemble average from using high-frequency intraday information, provide an excellent forecasting performance compared to using just low-frequency daily information.

Tango Rapperswil
Tango Rapperswil

    
RPA Switzerland

Robotic Process Automation Switzerland