Academic Journals Database
Disseminating quality controlled scientific knowledge

Gene Expression of Glucose Transporter 1 (GLUT1), Hexokinase 1 and Hexokinase 2 in Gastroenteropancreatic Neuroendocrine Tumors: Correlation with F-18-fluorodeoxyglucose Positron Emission Tomography and Cellular Proliferation

ADD TO MY LIST
 
Author(s): Tina Binderup | Ulrich Peter Knigge | Birgitte Federspiel | Peter Sommer | Jane Preuss Hasselby | Annika Loft | Andreas Kjaer

Journal: Diagnostics
ISSN 2075-4418

Volume: 3;
Issue: 4;
Start page: 372;
Date: 2013;
Original page

Keywords: neuroendocrine tumors | glucose | gene expression | imaging | FDG-PET | proliferation index

ABSTRACT
Neoplastic tissue exhibits high glucose utilization and over-expression of glucose transporters (GLUTs) and hexokinases (HKs), which can be imaged by 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET). The aim of the present study was to investigate the expression of glycolysis-associated genes and to compare this with FDG-PET imaging as well as with the cellular proliferation index in two cancer entities with different malignant potential. Using real-time PCR, gene expression of GLUT1, HK1 and HK2 were studied in 34 neuroendocrine tumors (NETs) in comparison with 14 colorectal adenocarcinomas (CRAs). The Ki67 proliferation index and, when available, FDG-PET imaging was compared with gene expression. Overexpression of GLUT1 gene expression was less frequent in NETs (38%) compared to CRAs (86%), P = 0.004. HK1 was overexpressed in 41% and 71% of NETs and CRAs, respectively (P = 0.111) and HK2 was overexpressed in 50% and 64% of NETs and CRAs, respectively (P = 0.53). There was a significant correlation between the Ki67 proliferation index and GLUT1 gene expression for the NETs (R = 0.34, P = 0.047), but no correlation with the hexokinases. FDG-PET identified foci in significantly fewer NETs (36%) than CRAs (86%), (P = 0.04). The gene expression results, with less frequent GLUT1 and HK1 upregulation in NETs, confirmed the lower metabolic activity of NETs compared to the more aggressive CRAs. In accordance with this, fewer NETs were FDG-PET positive compared to CRA tumors and FDG uptake correlated with GLUT1 gene expression.

Tango Rapperswil
Tango Rapperswil

    
RPA Switzerland

RPA Switzerland

Robotic process automation