Academic Journals Database
Disseminating quality controlled scientific knowledge

Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal)

ADD TO MY LIST
 
Author(s): F. Lucazeau | F. Rolandone

Journal: Solid Earth Discussions
ISSN 1869-9537

Volume: 4;
Issue: 1;
Start page: 599;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
New temperature measurements from eight boreholes in the West African Craton (WAC) reveal superficial perturbations down to 100 meters below the alteration zone. These perturbations are both related to a recent increase of the surface air temperature (SAT) and to the site effects caused by fluids circulations and/or the lower conduction in the alterites. The ground surface temperature (GST) inverted from the boreholes temperatures is stable in the past (1700–1940) and then dramatically increases in the most recent years (1.5 °C since 1950). This is consistent with the increase of the SAT recorded at two nearby meteorological stations (Tambacounda and Kedougou), and more generally in the Sahel with a coeval rainfall decrease. Site effects are superimposed to the climatic effect and interpreted by advective (circulation of fluids) or conductive (lower conductivity of laterite and of high-porosity sand) perturbations. We used a 1-D finite differences thermal model and a Monte-Carlo procedure to find the best estimates of these sites perturbations: all the eight boreholes temperatures logs can be interpreted with the same basal heat-flow and the same surface temperature history, but with some realistic changes of thermal conductivity and/or fluid velocity. The GST trend observed in Senegal can be confirmed by two previous boreholes measurements made in 1983 in other locations of West Africa, the first one in an arid zone of northern Mali and the second one in a subhumid zone in southern Mali. Finally, the background heat-flow is low (30 ± 1 m Wm−2), which makes this part of the WAC more similar with the observations in the southern part (33 ± 8 m Wm−2) rather than with those in the northern part and in the PanAfrican domains where the surface heat-flow is 15–20 m Wm−2 higher.
RPA Switzerland

Robotic Process Automation Switzerland

    

Tango Jona
Tangokurs Rapperswil-Jona