Academic Journals Database
Disseminating quality controlled scientific knowledge

An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network

Author(s): Renato José Sassi

Journal: Pesquisa Operacional
ISSN 0101-7438

Volume: 32;
Issue: 1;
Start page: 139;
Date: 2012;
Original page

Keywords: clusters analysis | rough sets theory | self-organizing map

The database of real world contains a huge volume of data and among them there are hidden piles of interesting relations that are actually very hard to find out. The knowledge discovery in databases (KDD) appears as a possible solution to find out such relations aiming at converting information into knowledge. However, not all data presented in the bases are useful to a KDD. Usually, data are processed before being presented to a KDD aiming at reducing the amount of data and also at selecting more relevant data to be used by the system. This work consists in the use of Rough Sets Theory, in order to pre-processing data to be presented to Self-Organizing Map neural network (Hybrid Architecture) for clusters analysis. Experiments' results evidence the better performance using the Hybrid Architecture than Self-Organizing Map. The paper also presents all phases of the KDD process.
RPA Switzerland

Robotic Process Automation Switzerland


Tango Jona
Tangokurs Rapperswil-Jona