Academic Journals Database
Disseminating quality controlled scientific knowledge

Hydrophilic and lipophilic radiopharmaceuticals as tracers in pharmaceutical development: In vitro – In vivo studies

Author(s): Terán Mariella | Savio Eduardo | Paolino Andrea | Frier Malcolm

Journal: BMC Nuclear Medicine
ISSN 1471-2385

Volume: 5;
Issue: 1;
Start page: 5;
Date: 2005;
Original page

Abstract Background Scintigraphic studies have been performed to assess the release, both in vitro and in vivo, of radiotracers from tablet formulations. Four different tracers with differing physicochemical characteristics have been evaluated to assess their suitability as models for drug delivery. Methods In-vitro disintegration and dissolution studies have been performed at pH 1, 4 and 7. In-vivo studies have been performed by scintigraphic imaging in healthy volunteers. Two hydrophilic tracers, (99mTc-DTPA) and (99mTc-MDP), and two lipophilic tracers, (99mTc-ECD) and (99mTc-MIBI), were used as drug models. Results Dissolution and disintegration profiles, differed depending on the drug model chosen. In vitro dissolution velocity constants indicated a probable retention of the radiotracer in the formulation. In vivo disintegration velocity constants showed important variability for each radiopharmaceutical. Pearson statistical test showed no correlation between in vitro drug release, and in vivo behaviour, for 99mTc-DTPA, 99mTc-ECD and 99mTc-MIBI. High correlation coefficients were found for 99mTc-MDP not only for in vitro dissolution and disintegration studies but also for in vivo scintigraphic studies. Conclusion Scintigraphic studies have made a significant contribution to the development of drug delivery systems. It is essential, however, to choose the appropriate radiotracers as models of drug behaviour. This study has demonstrated significant differences in release patterns, depending on the model chosen. It is likely that each formulation would require the development of a specific model, rather than being able to use a generic drug model on the basis of its physicochemical characteristics.
RPA Switzerland

Robotic Process Automation Switzerland


Tango Jona
Tangokurs Rapperswil-Jona