Academic Journals Database
Disseminating quality controlled scientific knowledge

Influence of legumes on N cycling in a heathland in northwest Spain

ADD TO MY LIST
 
Author(s): A. Rodríguez | J. Durán | A. Gallardo

Journal: Web Ecology
ISSN 2193-3081

Volume: 7;
Issue: 1;
Start page: 87;
Date: 2007;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
Nitrogen availability frequently limits plant growth in natural ecosystems. N-fixers should have a substantial competitive advantage in N-limited systems, and as a byproduct of their activity they should increase the quantity and availability of N in the system as a whole. However, this effect has rarely been quantified in natural ecosystems. Heathlands in northwest Spain are frequently occupied by legume scrubs. We tested whether the presence of these legumes affected the N cycle in these communities. Specifically, we addressed the following questions: is nitrogen availability higher beneath legume canopies than beneath non-legume canopies? Is soil microbial biomass acting as a sink of extra N mineralized beneath legume canopies? Does the presence of legume scrubs change the soil pools of labile N and P? Is N plant uptake different under N-fixer scrubs than under non-N-fixer scrubs? To answer these questions, we sampled soil beneath the canopy of randomly selected individuals of Erica umbellata, Ulex gallii, and Genista tridentata twice during the growing season. Soil samples were analyzed for organic matter, NH4-N, NO3-N, DON, PO4-P, N mineralization and nitrification rates, and soil microbial biomass-N. In addition, we estimated N uptake by plants and the N concentration in green tissue to compare internal N cycles between legume and non-legume scrubs. Nitrification rates, DON (dissolved organic nitrogen), soil NO3 concentration, and N uptake were significantly higher beneath legume canopies. However, soil microbial biomass-N and extractable-P were significantly lower under legumes. Our results showed that the presence of legume scrubs modify the size of N pools and the dominant form of available N for plants, increasing spatial heterogeneity in mixed stands.
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Rapperswil
Tango Rapperswil