Academic Journals Database
Disseminating quality controlled scientific knowledge

Infraestructura pública y precios de vivienda: una aplicación de regresión geográficamente ponderada en el contexto de precios hedónicos Public infrastructure and housing prices: An application of geographically weighted regression within the context of hedonic prices

ADD TO MY LIST
 
Author(s): Juan Carlos Duque | Ermilson Velásquez Ceballos | Jorge Agudelo

Journal: Ecos de Economía
ISSN 1657-4206

Volume: 15;
Issue: 33;
Start page: 99;
Date: 2012;
Original page

Keywords: Sector Inmobiliario | GWR | Regresión Geográficamente Ponderada | Metro de Medellín | Precios hedónicos

ABSTRACT
El análisis de las externalidades en el sector inmobiliario ha atraído desde hace varios años la atención de los investigadores suscitando una gran cantidad de estudios al respecto. En este artículo se utilizan modelos econométricos tradicionales, de la econometría espacial y de regresión ponderada geográficamente, para analizar y comparar a la luz de estos modelos la influencia que tiene en los precios de las viviendas la existencia de una estación del metro en San Javier ubicada en el centro occidente de la ciudad de Medellín. El principal hallazgo en este estudio es que la presencia de la estación del metro tiene una influencia positiva en los precios de las viviendas localizadas en un radio de 600 metros alrededor de la estación; sin embargo, las viviendas cercanas a las vías de acceso del metro a la estación presentan un importante decremento en sus precios. AbstractThe analysis of externalities in real state has been matter of study during the past few years. In this paper we use both conventional and spatial econometric model, as well as geographically weighted regression models, to measure the effect of the San Javier Metro Station (in Medellín, Colombia) on the housing prices of the surrounding area. The main finding of this study is that the metro station has a positive impact on the prices of houses located within a radius of 600 meter from the station. However, the railroad track accessing the station has a negative impact on housing prices located nearby.The analysis of externalities in real state has been matter of study during the past few years. In this paper we use both conventional and spatial econometric model, as well as geographically weighted regression models, to measure the effect of the San Javier Metro Station (in Medellín, Colombia) on the housing prices of the surrounding area.The main finding of this study is that the metro station has a positive impact on the prices of houses located within a radius of 600 meter from the station. However, the railroad track accessing the station has a negative impact on housing prices located nearby.
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Rapperswil
Tango Rapperswil