Academic Journals Database
Disseminating quality controlled scientific knowledge

Learning Bayesian Dependence Model for Student Modelling

ADD TO MY LIST
 
Author(s): Adina COCU

Journal: Annals of Dunarea de Jos
ISSN 1221-454X

Volume: 31;
Issue: 2;
Start page: 26;
Date: 2008;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: Bayes network | structure learning | student modelling | intelligent tutoring system

ABSTRACT
Learning a Bayesian network from a numeric set of data is a challenging task because of dual nature of learning process: initial need to learn network structure, and then to find out the distribution probability tables. In this paper, we propose a machine-learning algorithm based on hill climbing search combined with Tabu list. The aim of learning process is to discover the best network that represents dependences between nodes. Another issue in machine learning procedure is handling numeric attributes. In order to do that, we must perform an attribute discretization pre-processes. This discretization operation can influence the results of learning network structure. Therefore, we make a comparative study to find out the most suitable combination between discretization method and learning algorithm, for a specific data set.
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Rapperswil
Tango Rapperswil