Author(s): R. Sekar | K. Raju | R. Vasanthakumari
Journal: Global Journal of Mathematical Analysis
ISSN 2307-9002
Volume: 1;
Issue: 2;
Start page: 37;
Date: 2013;
Original page
ABSTRACT
Instability of themocovection in a multi-component fluid has wide range of applications in ionospheric, geothermal and industries. In this analysis, the effect of rotation and vertical anisotropy on Soret-driven thermoconvective instability in a ferrofluid has been studied. The fluid layer is assumed to be horizontal and is heated from below and salted from above. In momentum equation, the effect of both substantial derivatives and coriolis terms are considered. The resulting eigen value problem is solved using Brinkman model. A linear stability analysis is used for both stationary and oscillatory instabilities for different parameters for which normal mode technique is applied. The effect of rotation tends to stabilize the system and anisotropy and Soret effects tend to destabilize the system.
Journal: Global Journal of Mathematical Analysis
ISSN 2307-9002
Volume: 1;
Issue: 2;
Start page: 37;
Date: 2013;
Original page
ABSTRACT
Instability of themocovection in a multi-component fluid has wide range of applications in ionospheric, geothermal and industries. In this analysis, the effect of rotation and vertical anisotropy on Soret-driven thermoconvective instability in a ferrofluid has been studied. The fluid layer is assumed to be horizontal and is heated from below and salted from above. In momentum equation, the effect of both substantial derivatives and coriolis terms are considered. The resulting eigen value problem is solved using Brinkman model. A linear stability analysis is used for both stationary and oscillatory instabilities for different parameters for which normal mode technique is applied. The effect of rotation tends to stabilize the system and anisotropy and Soret effects tend to destabilize the system.