Academic Journals Database
Disseminating quality controlled scientific knowledge

Logical network of genotoxic stress-induced NF-kappaB signal transduction predicts putative target structures for therapeutic intervention strategies

ADD TO MY LIST
 
Author(s): Rainer Poltz | Raimo Franke | Katrin Schweitzer | et al

Journal: Advances and Applications in Bioinformatics and Chemistry
ISSN 1178-6949

Volume: 2009;
Issue: default;
Start page: 125;
Date: 2009;
Original page

ABSTRACT
Rainer Poltz1, Raimo Franke1,#, Katrin Schweitzer1, Steffen Klamt2, Ernst-Dieter Gilles2, Michael Naumann11Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany; 2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; #Present address: Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, GermanyAbstract: Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB). Here, we present a Boolean network model of the NF-κB signal transduction induced by genotoxic stress in epithelial cells. For the representation and analysis of the model, we used the formalism of logical interaction hypergraphs. Model reconstruction was based on a careful meta-analysis of published data. By calculating minimal intervention sets, we identified p53-induced protein with a death domain (PIDD), receptor-interacting protein 1 (RIP1), and protein inhibitor of activated STAT y (PIASy) as putative therapeutic targets to abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically may potentiate the effectiveness of radio- and chemotherapy. Thus, the presented model allows a better understanding of the signal transduction in tumor cells and provides candidates as new therapeutic target structures.Keywords: apoptosis, Boolean network, cancer therapy, DNA-damage response, NF-κB
RPA Switzerland

Robotic Process Automation Switzerland

    

Tango Rapperswil
Tango Rapperswil