Academic Journals Database
Disseminating quality controlled scientific knowledge

Microstructure and hydraulic properties of biological soil crusts on sand dunes: a comparison between arid and temperate climates

ADD TO MY LIST
 
Author(s): T. Fischer | A. Yair | M. Veste

Journal: Biogeosciences Discussions
ISSN 1810-6277

Volume: 9;
Issue: 9;
Start page: 12711;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
We studied the relationships between crust microstructure, infiltration and water holding capacity under arid and temperate conditions (Factor A: Climate) on biological soil crusts (BSCs) sampled along a~catena on mobile sand dunes (Factor B: Catena). The arid study site was located near Nizzana, Israel (precipitation: 86 mm a−1, PET: ~2500 mm a−1) and the temperate site near Lieberose, Germany (precipitation: 569 mm a−1, PET: ~780 mm a−1). BSCs were sampled near the dune crest, at the centre of the dune slope and at the dune base at each site. Scanning electron microscopy (SEM) was used to characterize BSC morphology and microstructure. Infiltration was determined using microinfiltrometry under controlled moisture conditions in the lab. Water holding capacities were determined after water saturation of the dry BSCs. Wettability of the crusts was characterized using a "repellency index", which was calculated from water and ethanol sorptivities. Irrespective of the climate, an accumulation of fine particles in the BSCs was found, increasing along the catena from dune crest to dune base. Texture was finer and water holding capacities of the underlying substrate were higher at the arid site, whereas surface wettability was reduced at the temperate site. At both sites, BSCs caused extra water holding capacity compared to the substrate. Infiltration rates decreased along the catena and were generally lower at the dune slope and base of the arid site. A mechanism of crust stabilization is proposed where BSCs benefit from increased texture and biomass mediated water supply, and where the water supply to higher plants was limited due to alteration of physico-chemical surface properties under temperate conditions.

Tango Rapperswil
Tango Rapperswil

    
RPA Switzerland

RPA Switzerland

Robotic process automation