Academic Journals Database
Disseminating quality controlled scientific knowledge

Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

ADD TO MY LIST
 
Author(s): Hudac CM | Kota S | Nedrow JL | Molfese DL

Journal: Eye and Brain
ISSN 1179-2744

Volume: 2012;
Issue: default;
Start page: 1;
Date: 2012;
Original page

ABSTRACT
Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset) map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early neurooptometric rehabilitation for posttrauma vision syndrome, visual midline shift syndrome, and other similar subtle vision disorders to support neural reorganization is discussed.Keywords: traumatic brain injury, posttrauma vision syndrome, visual midline shift syndrome, visual event-related potentials, source localization, neural reorganization
RPA Switzerland

Robotic Process Automation Switzerland

    

Tango Jona
Tangokurs Rapperswil-Jona