Academic Journals Database
Disseminating quality controlled scientific knowledge

Performance of the Tariff Method: validation of a simple additive algorithm for analysis of verbal autopsies

ADD TO MY LIST
 
Author(s): James Spencer | Flaxman Abraham | Murray Christopher

Journal: Population Health Metrics
ISSN 1478-7954

Volume: 9;
Issue: 1;
Start page: 31;
Date: 2011;
Original page

Keywords: Verbal autopsy | validation | gold standard | Tariff Method | cause of death | mortality | cause-specific mortality fractions

ABSTRACT
Abstract Background Verbal autopsies provide valuable information for studying mortality patterns in populations that lack reliable vital registration data. Methods for transforming verbal autopsy results into meaningful information for health workers and policymakers, however, are often costly or complicated to use. We present a simple additive algorithm, the Tariff Method (termed Tariff), which can be used for assigning individual cause of death and for determining cause-specific mortality fractions (CSMFs) from verbal autopsy data. Methods Tariff calculates a score, or "tariff," for each cause, for each sign/symptom, across a pool of validated verbal autopsy data. The tariffs are summed for a given response pattern in a verbal autopsy, and this sum (score) provides the basis for predicting the cause of death in a dataset. We implemented this algorithm and evaluated the method's predictive ability, both in terms of chance-corrected concordance at the individual cause assignment level and in terms of CSMF accuracy at the population level. The analysis was conducted separately for adult, child, and neonatal verbal autopsies across 500 pairs of train-test validation verbal autopsy data. Results Tariff is capable of outperforming physician-certified verbal autopsy in most cases. In terms of chance-corrected concordance, the method achieves 44.5% in adults, 39% in children, and 23.9% in neonates. CSMF accuracy was 0.745 in adults, 0.709 in children, and 0.679 in neonates. Conclusions Verbal autopsies can be an efficient means of obtaining cause of death data, and Tariff provides an intuitive, reliable method for generating individual cause assignment and CSMFs. The method is transparent and flexible and can be readily implemented by users without training in statistics or computer science.

Tango Rapperswil
Tango Rapperswil

    
RPA Switzerland

RPA Switzerland

Robotic process automation