Academic Journals Database
Disseminating quality controlled scientific knowledge

Phosphoproteins regulated by heat stress in rice leaves

ADD TO MY LIST
 
Author(s): Chen Xinhai | Zhang Wenfeng | Zhang Baoqian | Zhou Jiechao | Wang Yongfei | Yang Qiaobin | Ke Yuqin | He Huaqin

Journal: Proteome Science
ISSN 1477-5956

Volume: 9;
Issue: 1;
Start page: 37;
Date: 2011;
Original page

ABSTRACT
Abstract Background High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (Oryza sativa L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored. Methods Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting. Results Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins. Conclusion Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H+-ATPase, remains unknown.

Tango Rapperswil
Tango Rapperswil

    
RPA Switzerland

Robotic Process Automation Switzerland