Academic Journals Database
Disseminating quality controlled scientific knowledge

The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light

ADD TO MY LIST
 
Author(s): Warthen DM | Provencio I

Journal: Eye and Brain
ISSN 1179-2744

Volume: 2012;
Issue: default;
Start page: 43;
Date: 2012;
Original page

ABSTRACT
Daniel M Warthen,1,2 Ignacio Provencio11Department of Biology, University of Virginia, Charlottesville, VA, USA; 2Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USAAbstract: Light exerts many effects on behavior and physiology. These effects can be characterized as either image-forming or nonimage-forming (NIF) visual processes. Image-forming vision refers to the process of detecting objects and organisms in the environment and distinguishing their physical characteristics, such as size, shape, and direction of motion. NIF vision, in contrast, refers to effects of light that are independent of fine spatiotemporal vision. NIF effects are many and varied, ranging from modulation of basal physiology, such as heart rate and body temperature, to changes in higher functions, such as mood and cognitive performance. In mammals, many NIF effects of light are dependent upon the inner retinal photopigment melanopsin and the cells in which melanopsin is expressed, the intrinsically photosensitive retinal ganglion cells (ipRGCs). The ipRGCs project broadly throughout the brain. Many of these projections terminate in areas known to mediate NIF effects, while others terminate in regions whose link to photoreception remains to be established. Additionally, the presence of ipRGC projections to areas of the brain with no known link to photoreception suggests the existence of additional ipRGC-mediated NIF effects. This review summarizes the known NIF effects of light and the role of melanopsin and ipRGCs in driving these effects, with an eye toward stimulating further investigation of the many and varied effects of light on physiology and behavior.Keywords: amygdala, bed nucleus of the stria terminalis, melanopsin, opsin, optic nerve, retina
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Rapperswil
Tango Rapperswil