Academic Journals Database
Disseminating quality controlled scientific knowledge

Scatterometer hurricane wind speed retrievals using cross polarization

Author(s): G.-J. van Zadelhoff | A. Stoffelen | P. W. Vachon | J. Wolfe | J. Horstmann | M. Belmonte Rivas

Journal: Atmospheric Measurement Techniques Discussions
ISSN 1867-8610

Volume: 6;
Issue: 4;
Start page: 7945;
Date: 2013;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Hurricane-force wind speeds can have a large societal impact and in this paper microwave C-band cross-polarized (VH) signals are investigated to assess if they can be used to derive extreme wind speed conditions. European satellite scatterometers have excellent hurricane penetration capability at C-band, but the vertically (VV) polarized signals become insensitive above 25 m s−1. VV and VH polarized backscatter signals from RADARSAT-2 SAR imagery acquired during severe hurricane events were compared to collocated SFMR wind measurements acquired by NOAA's hurricane-hunter aircraft. From this data set a Geophysical Model Function (GMF) at strong-to-extreme/severe wind speeds (i.e. 20 m s−1 < U10 < 45 m s−1) is derived. Within this wind speed regime, cross-polarized data showed no distinguishable loss of sensitivity and as such, cross-polarized data can be considered a good candidate for the retrieval of strong-to-severe wind speeds from satellite instruments. The upper limit of 45 m s−1 is defined by the currently available collocated data. The validity of the derived relationship between wind speed and VH has been evaluated by comparing the cross polarized signals to two independent wind speed datasets, i.e. short-range ECMWF Numerical Weather Prediction (NWP) model forecast winds and the NOAA best estimate one-minute maximum sustained winds. Analysis of the three comparison data sets confirm that cross-polarized signals from satellites will enable the retrieval of strong-to-severe wind speeds where VV or horizontal (HH) polarization data has saturated. The VH backscatter increases exponentially with respect to wind speed (linear against VH [dB]) and a near real time assessment of maximum sustained wind speed is possible using VH measurements. VH measurements thus would be an extremely valuable complement on next-generation scatterometers for Hurricane forecast warnings and hurricane model initialization.
RPA Switzerland

Robotic Process Automation Switzerland


Tango Rapperswil
Tango Rapperswil