Academic Journals Database
Disseminating quality controlled scientific knowledge

Very High Resolution Satellite Image Classification Using Fuzzy Rule-Based Systems

ADD TO MY LIST
 
Author(s): Shabnam Jabari | Yun Zhang

Journal: Algorithms
ISSN 1999-4893

Volume: 6;
Issue: 4;
Start page: 762;
Date: 2013;
Original page

Keywords: fuzzy rule based systems | object-based image classification | very high resolution satellite imagery | urban land cover

ABSTRACT
The aim of this research is to present a detailed step-by-step method for classification of very high resolution urban satellite images (VHRSI) into specific classes such as road, building, vegetation, etc., using fuzzy logic. In this study, object-based image analysis is used for image classification. The main problems in high resolution image classification are the uncertainties in the position of object borders in satellite images and also multiplex resemblance of the segments to different classes. In order to solve this problem, fuzzy logic is used for image classification, since it provides the possibility of image analysis using multiple parameters without requiring inclusion of certain thresholds in the class assignment process. In this study, an inclusive semi-automatic method for image classification is offered, which presents the configuration of the related fuzzy functions as well as fuzzy rules. The produced results are compared to the results of a normal classification using the same parameters, but with crisp rules. The overall accuracies and kappa coefficients of the presented method stand higher than the check projects.
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Jona
Tangokurs Rapperswil-Jona